Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mesoscale Reaction-Diffusion Phenomena Governing Lignin-First Biomass Fractionation.

Identifieur interne : 000276 ( Main/Exploration ); précédent : 000275; suivant : 000277

Mesoscale Reaction-Diffusion Phenomena Governing Lignin-First Biomass Fractionation.

Auteurs : Nicholas E. Thornburg [États-Unis] ; M Brennan Pecha [États-Unis] ; David G. Brandner [États-Unis] ; Michelle L. Reed [États-Unis] ; Josh V. Vermaas [États-Unis] ; William E. Michener [États-Unis] ; Rui Katahira [États-Unis] ; Todd B. Vinzant [États-Unis] ; Thomas D. Foust [États-Unis] ; Bryon S. Donohoe [États-Unis] ; Yuriy Román-Leshkov [États-Unis] ; Peter N. Ciesielski [États-Unis] ; Gregg T. Beckham [États-Unis]

Source :

RBID : pubmed:32246557

Abstract

Lignin solvolysis from the plant cell wall is the critical first step in lignin depolymerization processes involving whole biomass feedstocks. However, little is known about the coupled reaction kinetics and transport phenomena that govern the effective rates of lignin extraction. Here, we report a validated simulation framework that determines intrinsic, transport-independent kinetic parameters for the solvolysis of lignin, hemicellulose, and cellulose upon incorporation of feedstock characteristics for the methanol-based extraction of poplar as an example fractionation process. Lignin fragment diffusion is predicted to compete on the same time and length scales as reactions of lignin within cell walls and longitudinal pores of typical milled particle sizes, and mass transfer resistances are predicted to dominate the solvolysis of poplar particles that exceed approximately 2 mm in length. Beyond the approximately 2 mm threshold, effectiveness factors are predicted to be below 0.25, which implies that pore diffusion resistances may attenuate observable kinetic rate measurements by at least 75 % in such cases. Thus, researchers are recommended to conduct kinetic evaluations of lignin-first catalysts using biomass particles smaller than approximately 0.2 mm in length to avoid feedstock-specific mass transfer limitations in lignin conversion studies. Overall, this work highlights opportunities to improve lignin solvolysis by genetic engineering and provides actionable kinetic information to guide the design and scale-up of emerging biorefinery strategies.

DOI: 10.1002/cssc.202000558
PubMed: 32246557


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mesoscale Reaction-Diffusion Phenomena Governing Lignin-First Biomass Fractionation.</title>
<author>
<name sortKey="Thornburg, Nicholas E" sort="Thornburg, Nicholas E" uniqKey="Thornburg N" first="Nicholas E" last="Thornburg">Nicholas E. Thornburg</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pecha, M Brennan" sort="Pecha, M Brennan" uniqKey="Pecha M" first="M Brennan" last="Pecha">M Brennan Pecha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brandner, David G" sort="Brandner, David G" uniqKey="Brandner D" first="David G" last="Brandner">David G. Brandner</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reed, Michelle L" sort="Reed, Michelle L" uniqKey="Reed M" first="Michelle L" last="Reed">Michelle L. Reed</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vermaas, Josh V" sort="Vermaas, Josh V" uniqKey="Vermaas J" first="Josh V" last="Vermaas">Josh V. Vermaas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michener, William E" sort="Michener, William E" uniqKey="Michener W" first="William E" last="Michener">William E. Michener</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Katahira, Rui" sort="Katahira, Rui" uniqKey="Katahira R" first="Rui" last="Katahira">Rui Katahira</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vinzant, Todd B" sort="Vinzant, Todd B" uniqKey="Vinzant T" first="Todd B" last="Vinzant">Todd B. Vinzant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Foust, Thomas D" sort="Foust, Thomas D" uniqKey="Foust T" first="Thomas D" last="Foust">Thomas D. Foust</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donohoe, Bryon S" sort="Donohoe, Bryon S" uniqKey="Donohoe B" first="Bryon S" last="Donohoe">Bryon S. Donohoe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roman Leshkov, Yuriy" sort="Roman Leshkov, Yuriy" uniqKey="Roman Leshkov Y" first="Yuriy" last="Román-Leshkov">Yuriy Román-Leshkov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139</wicri:regionArea>
<wicri:noRegion>02139</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ciesielski, Peter N" sort="Ciesielski, Peter N" uniqKey="Ciesielski P" first="Peter N" last="Ciesielski">Peter N. Ciesielski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beckham, Gregg T" sort="Beckham, Gregg T" uniqKey="Beckham G" first="Gregg T" last="Beckham">Gregg T. Beckham</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32246557</idno>
<idno type="pmid">32246557</idno>
<idno type="doi">10.1002/cssc.202000558</idno>
<idno type="wicri:Area/Main/Corpus">000366</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000366</idno>
<idno type="wicri:Area/Main/Curation">000366</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000366</idno>
<idno type="wicri:Area/Main/Exploration">000366</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mesoscale Reaction-Diffusion Phenomena Governing Lignin-First Biomass Fractionation.</title>
<author>
<name sortKey="Thornburg, Nicholas E" sort="Thornburg, Nicholas E" uniqKey="Thornburg N" first="Nicholas E" last="Thornburg">Nicholas E. Thornburg</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pecha, M Brennan" sort="Pecha, M Brennan" uniqKey="Pecha M" first="M Brennan" last="Pecha">M Brennan Pecha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brandner, David G" sort="Brandner, David G" uniqKey="Brandner D" first="David G" last="Brandner">David G. Brandner</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reed, Michelle L" sort="Reed, Michelle L" uniqKey="Reed M" first="Michelle L" last="Reed">Michelle L. Reed</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vermaas, Josh V" sort="Vermaas, Josh V" uniqKey="Vermaas J" first="Josh V" last="Vermaas">Josh V. Vermaas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michener, William E" sort="Michener, William E" uniqKey="Michener W" first="William E" last="Michener">William E. Michener</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Katahira, Rui" sort="Katahira, Rui" uniqKey="Katahira R" first="Rui" last="Katahira">Rui Katahira</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vinzant, Todd B" sort="Vinzant, Todd B" uniqKey="Vinzant T" first="Todd B" last="Vinzant">Todd B. Vinzant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Foust, Thomas D" sort="Foust, Thomas D" uniqKey="Foust T" first="Thomas D" last="Foust">Thomas D. Foust</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Donohoe, Bryon S" sort="Donohoe, Bryon S" uniqKey="Donohoe B" first="Bryon S" last="Donohoe">Bryon S. Donohoe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roman Leshkov, Yuriy" sort="Roman Leshkov, Yuriy" uniqKey="Roman Leshkov Y" first="Yuriy" last="Román-Leshkov">Yuriy Román-Leshkov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139</wicri:regionArea>
<wicri:noRegion>02139</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ciesielski, Peter N" sort="Ciesielski, Peter N" uniqKey="Ciesielski P" first="Peter N" last="Ciesielski">Peter N. Ciesielski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beckham, Gregg T" sort="Beckham, Gregg T" uniqKey="Beckham G" first="Gregg T" last="Beckham">Gregg T. Beckham</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401</wicri:regionArea>
<wicri:noRegion>80401</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ChemSusChem</title>
<idno type="eISSN">1864-564X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignin solvolysis from the plant cell wall is the critical first step in lignin depolymerization processes involving whole biomass feedstocks. However, little is known about the coupled reaction kinetics and transport phenomena that govern the effective rates of lignin extraction. Here, we report a validated simulation framework that determines intrinsic, transport-independent kinetic parameters for the solvolysis of lignin, hemicellulose, and cellulose upon incorporation of feedstock characteristics for the methanol-based extraction of poplar as an example fractionation process. Lignin fragment diffusion is predicted to compete on the same time and length scales as reactions of lignin within cell walls and longitudinal pores of typical milled particle sizes, and mass transfer resistances are predicted to dominate the solvolysis of poplar particles that exceed approximately 2 mm in length. Beyond the approximately 2 mm threshold, effectiveness factors are predicted to be below 0.25, which implies that pore diffusion resistances may attenuate observable kinetic rate measurements by at least 75 % in such cases. Thus, researchers are recommended to conduct kinetic evaluations of lignin-first catalysts using biomass particles smaller than approximately 0.2 mm in length to avoid feedstock-specific mass transfer limitations in lignin conversion studies. Overall, this work highlights opportunities to improve lignin solvolysis by genetic engineering and provides actionable kinetic information to guide the design and scale-up of emerging biorefinery strategies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32246557</PMID>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1864-564X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>ChemSusChem</Title>
<ISOAbbreviation>ChemSusChem</ISOAbbreviation>
</Journal>
<ArticleTitle>Mesoscale Reaction-Diffusion Phenomena Governing Lignin-First Biomass Fractionation.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cssc.202000558</ELocationID>
<Abstract>
<AbstractText>Lignin solvolysis from the plant cell wall is the critical first step in lignin depolymerization processes involving whole biomass feedstocks. However, little is known about the coupled reaction kinetics and transport phenomena that govern the effective rates of lignin extraction. Here, we report a validated simulation framework that determines intrinsic, transport-independent kinetic parameters for the solvolysis of lignin, hemicellulose, and cellulose upon incorporation of feedstock characteristics for the methanol-based extraction of poplar as an example fractionation process. Lignin fragment diffusion is predicted to compete on the same time and length scales as reactions of lignin within cell walls and longitudinal pores of typical milled particle sizes, and mass transfer resistances are predicted to dominate the solvolysis of poplar particles that exceed approximately 2 mm in length. Beyond the approximately 2 mm threshold, effectiveness factors are predicted to be below 0.25, which implies that pore diffusion resistances may attenuate observable kinetic rate measurements by at least 75 % in such cases. Thus, researchers are recommended to conduct kinetic evaluations of lignin-first catalysts using biomass particles smaller than approximately 0.2 mm in length to avoid feedstock-specific mass transfer limitations in lignin conversion studies. Overall, this work highlights opportunities to improve lignin solvolysis by genetic engineering and provides actionable kinetic information to guide the design and scale-up of emerging biorefinery strategies.</AbstractText>
<CopyrightInformation>© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Thornburg</LastName>
<ForeName>Nicholas E</ForeName>
<Initials>NE</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4680-2733</Identifier>
<AffiliationInfo>
<Affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pecha</LastName>
<ForeName>M Brennan</ForeName>
<Initials>MB</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0894-8504</Identifier>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brandner</LastName>
<ForeName>David G</ForeName>
<Initials>DG</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4296-4855</Identifier>
<AffiliationInfo>
<Affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reed</LastName>
<ForeName>Michelle L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vermaas</LastName>
<ForeName>Josh V</ForeName>
<Initials>JV</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3139-6469</Identifier>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Michener</LastName>
<ForeName>William E</ForeName>
<Initials>WE</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Katahira</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vinzant</LastName>
<ForeName>Todd B</ForeName>
<Initials>TB</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Foust</LastName>
<ForeName>Thomas D</ForeName>
<Initials>TD</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3995-8254</Identifier>
<AffiliationInfo>
<Affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Donohoe</LastName>
<ForeName>Bryon S</ForeName>
<Initials>BS</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2272-5059</Identifier>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Román-Leshkov</LastName>
<ForeName>Yuriy</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0025-4233</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ciesielski</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3360-9210</Identifier>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beckham</LastName>
<ForeName>Gregg T</ForeName>
<Initials>GT</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3480-212X</Identifier>
<AffiliationInfo>
<Affiliation>National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DE-AC36-08GO28308</GrantID>
<Agency>Bioenergy Technologies Office</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>ChemSusChem</MedlineTA>
<NlmUniqueID>101319536</NlmUniqueID>
<ISSNLinking>1864-5631</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biomass reaction kinetics</Keyword>
<Keyword MajorTopicYN="N">computational fluid dynamics</Keyword>
<Keyword MajorTopicYN="N">reductive catalytic fractionation</Keyword>
<Keyword MajorTopicYN="N">solvolysis</Keyword>
<Keyword MajorTopicYN="N">transport phenomena</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32246557</ArticleId>
<ArticleId IdType="doi">10.1002/cssc.202000558</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>W. Schutyser, T. Renders, S. Van den Bosch, S. F. Koelewijn, G. T. Beckham, B. F. Sels, Chem. Soc. Rev. 2018, 47, 852-908;</Citation>
</Reference>
<Reference>
<Citation>Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, K. Barta, Chem. Rev. 2018, 118, 614-678;</Citation>
</Reference>
<Reference>
<Citation>R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. A. Bruijnincx, B. M. Weckhuysen, Angew. Chem. Int. Ed. 2016, 55, 8164-8215;</Citation>
</Reference>
<Reference>
<Citation>Angew. Chem. 2016, 128, 8296-8354.</Citation>
</Reference>
<Reference>
<Citation>C. J. Biermann in Handbook of Pulping and Papermaking, 2nd ed. (Ed.: C. J. Biermann), Academic Press, San Diego, 1996, pp. 55-100.</Citation>
</Reference>
<Reference>
<Citation>S. Constant, H. L. J. Wienk, A. E. Frissen, P. d. Peinder, R. Boelens, D. S. van Es, R. J. H. Grisel, B. M. Weckhuysen, W. J. J. Huijgen, R. J. A. Gosselink, P. C. A. Bruijnincx, Green Chem. 2016, 18, 2651-2665.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>P. Sannigrahi, A. J. Ragauskas in Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals (Ed.: C. E. Wyman), Wiley, Chichester, UK, 2013, pp. 201-222;</Citation>
</Reference>
<Reference>
<Citation>Z. Zhang, M. D. Harrison, D. W. Rackemann, W. O. S. Doherty, I. M. O'Hara, Green Chem. 2016, 18, 360-381.</Citation>
</Reference>
<Reference>
<Citation>J. S. Kim, Y. Y. Lee, T. H. Kim, Bioresour. Technol. 2016, 199, 42-48.</Citation>
</Reference>
<Reference>
<Citation>A. George, A. Brandt, K. Tran, S. M. S. N. S. Zahari, D. Klein-Marcuschamer, N. Sun, N. Sathitsuksanoh, J. Shi, V. Stavila, R. Parthasarathi, S. Singh, B. M. Holmes, T. Welton, B. A. Simmons, J. P. Hallett, Green Chem. 2015, 17, 1728-1734.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>S. Ewanick, R. Bura in Bioalcohol Production (Ed.: K. Waldron), Woodhead Publishing, 2010, pp. 3-23;</Citation>
</Reference>
<Reference>
<Citation>A. Duque, P. Manzanares, I. Ballesteros, M. Ballesteros in Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery (Ed.: S. I. Mussatto), Elsevier, Amsterdam, 2016, pp. 349-368.</Citation>
</Reference>
<Reference>
<Citation>M. E. Himmel, S.-Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, T. D. Foust, Science 2007, 315, 804-807.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai, U. Ray, Y. Li, Y. Kuang, Y. Li, N. Quispe, Y. Yao, A. Gong, U. H. Leiste, H. A. Bruck, J. Y. Zhu, A. Vellore, H. Li, M. L. Minus, Z. Jia, A. Martini, T. Li, L. Hu, Nature 2018, 554, 224;</Citation>
</Reference>
<Reference>
<Citation>H. Zhu, Z. Fang, Z. Wang, J. Dai, Y. Yao, F. Shen, C. Preston, W. Wu, P. Peng, N. Jang, Q. Yu, Z. Yu, L. Hu, ACS Nano 2016, 10, 1369-1377;</Citation>
</Reference>
<Reference>
<Citation>G. Chen, T. Li, C. Chen, C. Wang, Y. Liu, W. Kong, D. Liu, B. Jiang, S. He, Y. Kuang, L. Hu, Adv. Funct. Mater. 2019, 29, 1902772.</Citation>
</Reference>
<Reference>
<Citation>J. M. Pepper, Y. W. Lee, Can. J. Chem. 1969, 47, 723-727.</Citation>
</Reference>
<Reference>
<Citation>M. V. Galkin, J. S. M. Samec, ChemSusChem 2016, 9, 1544-1558.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>T. Renders, S. Van den Bosch, S. F. Koelewijn, W. Schutyser, B. F. Sels, Energy Environ. Sci. 2017, 10, 1551-1557;</Citation>
</Reference>
<Reference>
<Citation>T. Renders, G. Van den Bossche, T. Vangeel, K. Van Aelst, B. Sels, Curr. Opin. Biotechnol. 2019, 56, 193-201.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>E. M. Anderson, M. L. Stone, M. J. Hülsey, G. T. Beckham, Y. Román-Leshkov, ACS Sustainable Chem. Eng. 2018, 6, 7951-7959;</Citation>
</Reference>
<Reference>
<Citation>I. Kumaniaev, E. Subbotina, J. Savmarker, M. Larhed, M. V. Galkin, J. S. M. Samec, Green Chem. 2017, 19, 5767-5771;</Citation>
</Reference>
<Reference>
<Citation>Y. Li, B. Demir, L. M. Vázquez Ramos, M. Chen, J. A. Dumesic, J. Ralph, Green Chem. 2019, 21, 3561-3572.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>E. Minami, S. Saka, J. Wood Sci. 2003, 49, 0073-0078;</Citation>
</Reference>
<Reference>
<Citation>E. Minami, S. Saka, J. Wood Sci. 2005, 51, 395-400;</Citation>
</Reference>
<Reference>
<Citation>J. Yamazaki, E. Minami, S. Saka, J. Wood Sci. 2006, 52, 527-532.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>M. Goto, J. M. Smith, B. J. McCoy, Ind. Eng. Chem. Res. 1990, 29, 282-289;</Citation>
</Reference>
<Reference>
<Citation>B. R. You, S. C. Oh, Korean J. Chem. Eng. 2010, 27, 1159-1163;</Citation>
</Reference>
<Reference>
<Citation>L. Li, E. Kiran, in Supercritical Fluid Science and Technology, Vol. 406, American Chemical Society, 1989, pp. 317-331.</Citation>
</Reference>
<Reference>
<Citation>K. M. F. Kazi, H. Gauvin, P. Jollez, E. Chornet, Tappi J. 1997, 80, 209-219.</Citation>
</Reference>
<Reference>
<Citation>M. B. Pecha, J. I. M. Arbelaez, M. Garcia-Perez, F. Chejne, P. N. Ciesielski, Green Chem. 2019, 21, 2868-2898.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>C. Igathinathane, L. O. Pordesimo, E. P. Columbus, W. D. Batchelor, S. Sokhansanj, Comput. Electron. Agr. 2009, 66, 147-158;</Citation>
</Reference>
<Reference>
<Citation>P. N. Ciesielski, M. F. Crowley, M. R. Nimlos, A. W. Sanders, G. M. Wiggins, D. Robichaud, B. S. Donohoe, T. D. Foust, Energy Fuels 2015, 29, 242-254.</Citation>
</Reference>
<Reference>
<Citation>T. D. Goddard, C. C. Huang, E. C. Meng, E. F. Pettersen, G. S. Couch, J. H. Morris, T. E. Ferrin, Protein Sci. 2018, 27, 14-25.</Citation>
</Reference>
<Reference>
<Citation>M. B. Pecha, E. Ramirez, G. M. Wiggins, D. Carpenter, B. Kappes, S. Daw, P. N. Ciesielski, Energy Fuels 2018, 32, 10683-10694.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>E. E. Petersen, Chem. Eng. Sci. 1965, 20, 587-591;</Citation>
</Reference>
<Reference>
<Citation>D. E. Mears, Ind. Eng. Chem. Process Des. Dev. 1971, 10, 541-547.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>S. Cheng, I. D'cruz, M. Wang, M. Leitch, C. Xu, Energy Fuels 2010, 24, 4659-4667;</Citation>
</Reference>
<Reference>
<Citation>H.-L. Yan, Z.-K. Li, Z.-C. Wang, Z.-P. Lei, S.-B. Ren, C.-X. Pan, Y.-J. Tian, S.-G. Kang, J.-C. Yan, H.-F. Shui, Fuel 2019, 246, 394-401.</Citation>
</Reference>
<Reference>
<Citation>R. J. A. Gosselink, A. Abächerli, H. Semke, R. Malherbe, P. Käuper, A. Nadif, J. E. G. van Dam, Ind. Crops Prod. 2004, 19, 271-281.</Citation>
</Reference>
<Reference>
<Citation>A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, National Renewable Energy Laboratory, Technical Report NREL/TP-510-42618, 2008.</Citation>
</Reference>
<Reference>
<Citation>B. S. Donohoe, P. N. Ciesielski, T. B. Vinzant, in Biomass Conversion: Methods and Protocols (Ed.: M. E. Himmel), Humana Press, Totowa, NJ, 2012, pp. 31-47.</Citation>
</Reference>
<Reference>
<Citation>N. Gierlinger, M. Schwanninger, Plant Physiol. 2006, 140, 1246-1254.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>M. de Meijer, P. van der Zwan Rick, H. Militz, Holzforschung 1996, 50, 135-143;</Citation>
</Reference>
<Reference>
<Citation>A. J. Jacobson, S. Banerjee, Holzforschung 2006, 60, 59-63.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>J. V. Vermaas, L. Petridis, J. Ralph, M. F. Crowley, G. T. Beckham, Green Chem. 2019, 21, 109-122;</Citation>
</Reference>
<Reference>
<Citation>L. D. Dellon, A. J. Yanez, W. Li, R. Mabon, L. J. Broadbelt, Energy Fuels 2017, 31, 8263-8274;</Citation>
</Reference>
<Reference>
<Citation>J. V. Vermaas, L. D. Dellon, L. J. Broadbelt, G. T. Beckham, M. F. Crowley, ACS Sustainable Chem. Eng. 2019, 7, 3443-3453.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>O. Guvench, S. N. Greene, G. Kamath, J. W. Brady, R. M. Venable, R. W. Pastor, A. D. MacKerell, Jr., J. Comput. Chem. 2008, 29, 2543-2564;</Citation>
</Reference>
<Reference>
<Citation>O. Guvench, E. Hatcher, R. M. Venable, R. W. Pastor, A. D. MacKerell, J. Chem. Theory Comput. 2009, 5, 2353-2370.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. MacKerell, Jr., J. Comput. Chem. 2010, 31, 671-690;</Citation>
</Reference>
<Reference>
<Citation>W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33-38.</Citation>
</Reference>
<Reference>
<Citation>J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 2005, 26, 1781-1802.</Citation>
</Reference>
<Reference>
<Citation>C. Crestini, F. Melone, M. Sette, R. Saladino, Biomacromolecules 2011, 12, 3928-3935.</Citation>
</Reference>
<Reference>
<Citation>R. J. Millington, J. P. Quirk, Trans. Faraday Soc. 1961, 57, 1200-1207.</Citation>
</Reference>
<Reference>
<Citation>G. L. Comstock, Wood Fiber 1970, 1, 283-289.</Citation>
</Reference>
<Reference>
<Citation>P. Sannigrahi, D. H. Kim, S. Jung, A. Ragauskas, Energy Environ. Sci. 2011, 4, 1306-1310.</Citation>
</Reference>
<Reference>
<Citation>B. S. Donohoe, S. R. Decker, M. P. Tucker, M. E. Himmel, T. B. Vinzant, Biotechnol. Bioeng. 2008, 101, 913-925.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>M. R. Sturgeon, S. Kim, K. Lawrence, R. S. Paton, S. C. Chmely, M. Nimlos, T. D. Foust, G. T. Beckham, ACS Sustainable Chem. Eng. 2014, 2, 472-485;</Citation>
</Reference>
<Reference>
<Citation>K. Shimada, S. Hosoya, T. Ikeda, J. Wood Chem. Technol. 1997, 17, 57-72.</Citation>
</Reference>
<Reference>
<Citation>B. Tjaden, S. J. Cooper, D. J. L. Brett, D. Kramer, P. R. Shearing, Curr. Opin. Biotechnol. 2016, 12, 44-51.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>D. W. Rutherford, R. L. Wershaw, L. G. Cox, U. S. Geological Survey, Reston, VA, 2004;</Citation>
</Reference>
<Reference>
<Citation>R. M. Kellogg, F. F. Wangaard, Wood Fiber Sci. 1969, 1, 180-204;</Citation>
</Reference>
<Reference>
<Citation>Wood Handbook: Wood as an Engineering Material (Ed.: R. J. Ross), 2010 Edition ed., Forest Products Society, Madison, Wisconsin, USA, 2011.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>G. F. Froment, K. B. Bischoff, Chemical Reactor Analysis and Design, 2nd ed., Wiley, New York, NY, USA, 1990, chap. 3;</Citation>
</Reference>
<Reference>
<Citation>O. Levenspiel, Chemical Reaction Engineering, 3rd ed., Wiley, New York, NY, USA, 1998, chap. 18.</Citation>
</Reference>
<Reference>
<Citation>R. Aris, Chem. Eng. Sci. 1957, 6, 262-268.</Citation>
</Reference>
<Reference>
<Citation>H. Hartmann, T. Böhm, P. Daugbjerg Jensen, M. Temmerman, F. Rabier, M. Golser, Biomass Bioenergy 2006, 30, 944-953.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>I. W. McCahill, S. P. Hazen, Trends Plant Sci. 2019, 24, 853-866;</Citation>
</Reference>
<Reference>
<Citation>F. Yang, P. Mitra, L. Zhang, L. Prak, Y. Verhertbruggen, J.-S. Kim, L. Sun, K. Zheng, K. Tang, M. Auer, H. V. Scheller, D. Loqué, Plant Biotechnol. J. 2013, 11, 325-335.</Citation>
</Reference>
<Reference>
<Citation>V. S. P. Bitra, A. R. Womac, C. Igathinathane, P. I. Miu, Y. T. Yang, D. R. Smith, N. Chevanan, S. Sokhansanj, Bioresour. Technol. 2009, 100, 6578-6585.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>M. D. Smith, B. Mostofian, X. Cheng, L. Petridis, C. M. Cai, C. E. Wyman, J. C. Smith, Green Chem. 2016, 18, 1268-1277;</Citation>
</Reference>
<Reference>
<Citation>L. Petridis, J. C. Smith, ChemSusChem 2016, 9, 289-295.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>C. Schuerch, J. Am. Chem. Soc. 1952, 74, 5061-5067;</Citation>
</Reference>
<Reference>
<Citation>D. T. Balogh, A. A. S. Curvelo, R. A. M. C. De Groote, Holzforschung 1992, 46, 343-348.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>W. Schutyser, S. Van den Bosch, T. Renders, T. De Boe, S. F. Koelewijn, A. Dewaele, T. Ennaert, O. Verkinderen, B. Goderis, C. M. Courtin, B. F. Sels, Green Chem. 2015, 17, 5035-5045;</Citation>
</Reference>
<Reference>
<Citation>T. Renders, S. Van den Bosch, T. Vangeel, T. Ennaert, S.-F. Koelewijn, G. Van den Bossche, C. M. Courtin, W. Schutyser, B. F. Sels, ACS Sustainable Chem. Eng. 2016, 4, 6894-6904.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>S. Li, K. Lundquist, U. Westermark, Nord. Pulp Pap. Res. J. 2000, 15, 2000, 292;</Citation>
</Reference>
<Reference>
<Citation>S. Omori, M. Aoyama, A. Sakakibara, Holzforschung 1998, 52, 391-397.</Citation>
</Reference>
<Reference>
<Citation>I. Kumaniaev, J. S. M. Samec, Ind. Eng. Chem. Res. 2019, 58, 6899-6906.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>L. Shuai, M. T. Amiri, Y. M. Questell-Santiago, F. Héroguel, Y. Li, H. Kim, R. Meilan, C. Chapple, J. Ralph, J. S. Luterbacher, Science 2016, 354, 329-333;</Citation>
</Reference>
<Reference>
<Citation>W. Lan, M. T. Amiri, C. M. Hunston, J. S. Luterbacher, Angew. Chem. Int. Ed. 2018, 57, 1356-1360;</Citation>
</Reference>
<Reference>
<Citation>Angew. Chem. 2018, 130, 1370-1374;</Citation>
</Reference>
<Reference>
<Citation>P. J. Deuss, M. Scott, F. Tran, N. J. Westwood, J. G. de Vries, K. Barta, J. Am. Chem. Soc. 2015, 137, 7456-7467.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>J. Yan, A. Aznar, C. Chalvin, D. S. Birdseye, E. E. K. Baidoo, A. Eudes, P. M. Shih, D. Loqué, A. Zhang, H. V. Scheller, Biotechnol. Biofuels 2018, 11, 195;</Citation>
</Reference>
<Reference>
<Citation>C. Xu, X. Fu, R. Liu, L. Guo, L. Ran, C. Li, Q. Tian, B. Jiao, B. Wang, K. Luo, Tree Physiol. 2017, 37, 1713-1726.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>I. Porth, J. Klápště, O. Skyba, B. S. K. Lai, A. Geraldes, W. Muchero, G. A. Tuskan, C. J. Douglas, Y. A. El-Kassaby, S. D. Mansfield, New Phytol. 2013, 197, 777-790;</Citation>
</Reference>
<Reference>
<Citation>P. Sannigrahi, A. J. Ragauskas, G. A. Tuskan, Biofuels Bioprod. Biorefin. 2010, 4, 209-226.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>M. H. Studer, J. D. DeMartini, M. F. Davis, R. W. Sykes, B. Davison, M. Keller, G. A. Tuskan, C. E. Wyman, Proc. Natl. Acad. Sci. USA 2011, 108, 6300-6305;</Citation>
</Reference>
<Reference>
<Citation>S. Bhagia, W. Muchero, R. Kumar, G. A. Tuskan, C. E. Wyman, Biotechnol. Biofuels 2016, 9, 106.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>R. Franke, C. M. McMichael, K. Meyer, A. M. Shirley, J. C. Cusumano, C. Chapple, Plant J. 2000, 22, 223-234;</Citation>
</Reference>
<Reference>
<Citation>H. Luo, M. M. Abu-Omar, Green Chem. 2018, 20, 745-753.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>P. Oyarce, B. De Meester, F. Fonseca, L. de Vries, G. Goeminne, A. Pallidis, R. De Rycke, Y. Tsuji, Y. Li, S. Van den Bosch, B. Sels, J. Ralph, R. Vanholme, W. Boerjan, Nat. Plants 2019, 5, 225-237;</Citation>
</Reference>
<Reference>
<Citation>M. J. Orella, T. Z. H. Gani, J. V. Vermaas, M. L. Stone, E. M. Anderson, G. T. Beckham, F. R. Brushett, Y. Román-Leshkov, ACS Sustainable Chem. Eng. 2019, 7, 18313-18322.</Citation>
</Reference>
<Reference>
<Citation>A. Eudes, A. George, P. Mukerjee, J. S. Kim, B. Pollet, P. I. Benke, F. Yang, P. Mitra, L. Sun, Ö. P. Çetinkol, S. Chabout, G. Mouille, L. Soubigou-Taconnat, S. Balzergue, S. Singh, B. M. Holmes, A. Mukhopadhyay, J. D. Keasling, B. A. Simmons, C. Lapierre, J. Ralph, D. Loqué, Plant Biotechnol. J. 2012, 10, 609-620.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>B. D. Mar, H. J. Kulik, J. Phys. Chem. A 2017, 121, 532-543;</Citation>
</Reference>
<Reference>
<Citation>L. Berstis, T. Elder, M. Crowley, G. T. Beckham, ACS Sustainable Chem. Eng. 2016, 4, 5327-5335.</Citation>
</Reference>
<Reference>
<Citation>Y. Mottiar, R. Vanholme, W. Boerjan, J. Ralph, S. D. Mansfield, Curr. Opin. Biotechnol. 2016, 37, 190-200.</Citation>
</Reference>
<Reference>
<Citation>M. Harasek, B. Haddadi, C. Jordan, A. Friedl in Computer Aided Chemical Engineering, Vol. 43 (Eds.: A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, T. Wallek), Elsevier, 2018, pp. 1583-1588.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>C. G. Wilkerson, S. D. Mansfield, F. Lu, S. Withers, J.-Y. Park, S. D. Karlen, E. Gonzales-Vigil, D. Padmakshan, F. Unda, J. Rencoret, J. Ralph, Science 2014, 344, 90-93;</Citation>
</Reference>
<Reference>
<Citation>W. Lan, F. Lu, M. Regner, Y. Zhu, J. Rencoret, S. A. Ralph, U. I. Zakai, K. Morreel, W. Boerjan, J. Ralph, Plant Physiol. 2015, 167, 1284-1295.</Citation>
</Reference>
<Reference>
<Citation>J. Ralph, Phytochem. Rev. 2010, 9, 65-83.</Citation>
</Reference>
<Reference>
<Citation>L. A. Donaldson, J. P. Knox, Plant Physiol. 2012, 158, 642-653.</Citation>
</Reference>
<Reference>
<Citation> </Citation>
</Reference>
<Reference>
<Citation>W. Muchero, J. Guo, S. P. DiFazio, J.-G. Chen, P. Ranjan, G. T. Slavov, L. E. Gunter, S. Jawdy, A. C. Bryan, R. Sykes, A. Ziebell, J. Klápště, I. Porth, O. Skyba, F. Unda, Y. A. El-Kassaby, C. J. Douglas, S. D. Mansfield, J. Martin, W. Schackwitz, L. M. Evans, O. Czarnecki, G. A. Tuskan, BMC Genomics 2015, 16, 24;</Citation>
</Reference>
<Reference>
<Citation>B. S. F. Müller, J. E. de Almeida Filho, B. M. Lima, C. C. Garcia, A. Missiaggia, A. M. Aguiar, E. Takahashi, M. Kirst, S. A. Gezan, O. B. Silva-Junior, L. G. Neves, D. Grattapaglia, New Phytol. 2019, 221, 818-833;</Citation>
</Reference>
<Reference>
<Citation>C. Riedelsheimer, J. Lisec, A. Czedik-Eysenberg, R. Sulpice, A. Flis, C. Grieder, T. Altmann, M. Stitt, L. Willmitzer, A. E. Melchinger, Proc. Natl. Acad. Sci. USA 2012, 109, 8872-8877;</Citation>
</Reference>
<Reference>
<Citation>G. A. Tuskan, W. Muchero, T. J. Tschaplinski, A. J. Ragauskas, Curr. Opin. Biotechnol. 2019, 56, 250-257.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Thornburg, Nicholas E" sort="Thornburg, Nicholas E" uniqKey="Thornburg N" first="Nicholas E" last="Thornburg">Nicholas E. Thornburg</name>
</noRegion>
<name sortKey="Beckham, Gregg T" sort="Beckham, Gregg T" uniqKey="Beckham G" first="Gregg T" last="Beckham">Gregg T. Beckham</name>
<name sortKey="Brandner, David G" sort="Brandner, David G" uniqKey="Brandner D" first="David G" last="Brandner">David G. Brandner</name>
<name sortKey="Ciesielski, Peter N" sort="Ciesielski, Peter N" uniqKey="Ciesielski P" first="Peter N" last="Ciesielski">Peter N. Ciesielski</name>
<name sortKey="Donohoe, Bryon S" sort="Donohoe, Bryon S" uniqKey="Donohoe B" first="Bryon S" last="Donohoe">Bryon S. Donohoe</name>
<name sortKey="Foust, Thomas D" sort="Foust, Thomas D" uniqKey="Foust T" first="Thomas D" last="Foust">Thomas D. Foust</name>
<name sortKey="Katahira, Rui" sort="Katahira, Rui" uniqKey="Katahira R" first="Rui" last="Katahira">Rui Katahira</name>
<name sortKey="Michener, William E" sort="Michener, William E" uniqKey="Michener W" first="William E" last="Michener">William E. Michener</name>
<name sortKey="Pecha, M Brennan" sort="Pecha, M Brennan" uniqKey="Pecha M" first="M Brennan" last="Pecha">M Brennan Pecha</name>
<name sortKey="Reed, Michelle L" sort="Reed, Michelle L" uniqKey="Reed M" first="Michelle L" last="Reed">Michelle L. Reed</name>
<name sortKey="Roman Leshkov, Yuriy" sort="Roman Leshkov, Yuriy" uniqKey="Roman Leshkov Y" first="Yuriy" last="Román-Leshkov">Yuriy Román-Leshkov</name>
<name sortKey="Vermaas, Josh V" sort="Vermaas, Josh V" uniqKey="Vermaas J" first="Josh V" last="Vermaas">Josh V. Vermaas</name>
<name sortKey="Vinzant, Todd B" sort="Vinzant, Todd B" uniqKey="Vinzant T" first="Todd B" last="Vinzant">Todd B. Vinzant</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32246557
   |texte=   Mesoscale Reaction-Diffusion Phenomena Governing Lignin-First Biomass Fractionation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32246557" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020